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Wilson's renormalization group equations are introduced and investigated in 
the framework of perturbation theory with respect to the deviation of the renor- 
realization exponent from its bifurcation value. We consider the case when the 
dimension is equal to 4. An exact solution of these equations is constructed 
using analytic renormalization of the projection Hamiltonians. 
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1. I N T R O D U C T I O N  

In two previous papers ~1'2) we solved Wilson's renormalization group 
equations for an effective Hamiltonian whose free part is defined by 
long-range potential U(x),,~-const/lx[ a, Ix] ~ ~ .  Also it was assumed 
that the dimension d is not divisible by 4. As is well known, there exists a 
Gaussian branch of fixed points of renormalization group, defined by the 
family of the Hamiltonians of the form 

Ho=Ikl<~lkl~ dla(k)12dak 

There is such a discrete series of values of a that the corresponding 
spectrum of the differential of renormalization group on the Gaussian 
branch contains eigenvalue equal to 1. We expect that by analogy with 
finite-dimensional theory of bifurcations for such series of parameter a a 
new branch of non-Gaussian solutions bifurcates from the branch of 
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Gaussian fixed points. The multiplicky of eigenvalue 1 is equal to one in 
the case when the dimension d is not divisible by 4, and multiplicity of 
eigenvalue 1 is equal to two in the case d = 4  (we consider the most 
interesting point of bifurcation ao = -~d). 

General theorems of nonlinear analysis predict the bifurcation of only 
one non-Gaussian branch in the first case, that was considered in the 
framework of perturbation theory in the work. (2) In the second case from 
the point of view of general theory of dynamical systems an answer is not 
so definite. We shall show that in the case of dimension 4 also appears only 
one branch, which also has a constructive representation, basing on the 
operation o f  analytic renormalization. One can try to construct a non- 
Gaussian solution of this new branch as a power series in the deviation of 
the parameter a from the bifurcation value ao: 

a0 = 3d, ~ = a -  ~a 

2. W l L S O N ' S  E Q U A T I O N S  

First of all we will give all relevant definitions and properties concern- 
ing renormalization group. A Hamiltonian in the ball 12 = {k: [kl < R} is 
an expression of the form 

= ~ ~ hm(kl,..., kin)~(kl + . . .  +km) f i  a(ki)d~lki H(a) 
r n = l  Of)m i = 1  

If for some n, hi = 0, when i >  n, the Hamiltonian H(a) is called the finite 
particle. Two Hamiltonians are equivalent, if the sequences of their coef- 
ficient functions coincide on the subspaces k l +  "'" + k m = 0 .  A formal 
Hamiltonian is a formal series in e, H =  Ho + ell1 + " "whose coefficients 
are finite-particle Hamiltonians. The space of formal Hamiltonians with 
infinitely smooth coefficient functions hm, m =  1, 2,... will be denoted by 
~ .  

Wilson's renormalization transformation is a composition of two 
transformations, namely, the scaling R~ and the restriction ~o,~. 

The action of the scaling operator R~ on the m-particle Hamiltonian 

H= f hm(kl,... , kin)g)(k l +"" + km) f i  a(ki) ddki Jfa m i = 1  

is given by the formula 

i = 1  

(2 .1)  
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To the whole space of formal Hamiltonians the scaling operator is exten- 
ded by linearity. 

The restriction operator restricts the random Gibbsian field in the ball 
2s with Hamiltonian R~H to the subvolume .c2. If Ho+H' is a 
Hamiltonian of random field in the ball 2s then the Hamiltonian of its 
restriction to the ball Q has the form 

5~,;~( H ' +  Ho) = :exp[H'(a)]:k~(z;  z) + Ho (2.2) 

: :L~(z~_z) is the connected Wick ordering with respect to the free 
Gaussian measure with correlation function 

(~(kl+k2)[-A(Z~-z)(k)], A(z~-z)(k)=lk]d-"Iz(k)-z(k) l 

where )~(k)e C ~ ( ~ ) ,  )(k)  is the smoothed characteristic function of the 
ball s 

The Wilson renormalization transformation is a composition of the 
scaling and restriction operators 

R(a), =- R(~a{= SPa xRi a) (2.3) 
Z , , t  , , 

Transformations R (a) form a multiplicative group in 2. Let us 
introduce a topology in the space of Hamiltonians ~J~C'~:h('~= 
(h~ n), h~n),...) ~ 0 if there exists N >  0 such that h~) - 0 for m ~> N, h}2) ~ 0 in 
the C ~ topology. Then for any 2 > 0 the operator R(x, ~) is a nonlinear con- 
tinuous infinitely differentiabl~ (along any directions) mapping from g ~  
to ~ ,  and, moreover is an entire function of the parameter a. 

Wilson's equations arise when one looks for nontrivial fixed points of 
the renormalization transformation near the bifurcation points. 

We expect that, as usual in many problems of nonlinear analysis, for 
certain values of the parameter a, a new branch of solutions bifurcates from 
the branch of Gaussian fixed points of the renormalization group (RG). 
Typically, this new branch is unique; however, several branches may arise 
in degenerate cases. One can try to construct non-Gaussian solutions on 
this new branch as power series in the deviation of the parameter a from 
the bifurcation value ao. Owing to the invariance of the Hamiltonian under 
the action of the RG a hierarchy of equations on the coefficients of this 
series arises which we call Wilson's hierarchy of equations. Thus we have 
the problem of evaluation of the bifurcation values. 

So, let us denote 
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the space of formal power series in two variables, 

~:: ~2 --* ~-fo, ~: ~ a~, 6€ ~ 2 am,~ ~'+~ 
m , n  m , n  

is an operator of restriction to the diagonal, and let ~ ~f  o~ = ~ | ~ oo be 
the space of formal Hamiltonians depending on two variables. The renor- 
malization operator is an entire function of the parameter a, and therefore 
we can write 

R ( a )  = R(,,o) 
z,~ ~. da" z,J. n = 0  

where all the operators (d'/da') I ~ !  are continuous in the space of formal 
Hamiltonians ~ and the series converges for any 6. 

We introduce a new operator 

Z,,~ . 

D(ao, a). gmHm ~ ~ a" d~ R(~o) gmgm 
m = l  m ~ l  n = 0  - - m  / 

D e f i n i t i o n .  ao is a bifurcation value, if there exists a formal 
Hamiltonian H e ~ J f  ~ such 

rR(a~ = H (2.4) Z,Z 

The equality (4) is understood as the equality of formal Hamiltonians. In 
that case Hamiltonian H is called an effective Hamiltonian. 

As the general theory predicts, bifurcation points may be only such 
points, whose spectrum of differential of corresponding nonlinear transfor- 
mation contains eigenvalue 1. Analysis of the spectrum of differential of 
renormalization groups was performed in Refs. 3 and 4. If dimension d in 
not divisible by 4, then the spectrum of differential of RG in the first bifur- 
cation value ao = 3d contains simple eigenvalue 1 with eigenvector 

f (3(kl+ "'" +k4) a ( k l ) ' " 6 ( k 4 ) d k l " " d k 4 ,  ~(~~ = H t  H l = ( p  4 

where ~r = -(R(~~ )~(x~- z) is a differential of renormalization transfor- 
mation in 0 with a = ao = 3d. Coefficient functions must satisfy the con- 
ditions of smoothness, oddness in the spin variable, symmetry, and 
isotropy. In Ref. 1 is shown that in such a case there exists a unique non- 
trivial branch of fixed points. In the case d =  4 in the spectrum of ~(a0) ~ X , 2  



'Wilson's Renormalization Group Equations 855 

there arise two eigenvectors with eigenvalue l, which we denote (p4 and 
(V~0)2: 

~(~o),o4_ ~??(V~)2 (v~o)~ Z,)- 'r _ (,04, ----- 

where 

(V~o) 2 = f  k~ b(k~ + k2) a(k~) a(k2) dka dk2 

In such a situation general theorems of the theory of bifurcation did not 
work: may bifurcate 0, 1, 2, 3, branches of fixed point (see Refs. 6 and 7). 

We shall look for a solution in the class of projection Hamiltonians. 

3. ANALYTIC RENORMALIZATION AND 
PROJECTION H A M I L T O N I A N S  

Let ~ovg~ be the space of formal Hamiltonians, whose coefficient 
functions are bounded at infinity together with all their derivatives. 
Hamiltonian H ~ ~ of the form 

H =  :exp 5r 

where ~ e o ~ J t ~  is called a projection Hamiltonian. Really, it is a 
Hamiltonian of the random Gibbsian field, which is obtained by restriction 
of a random field in the whole momentum space with Hamiltonian 5(' to 
the ball f2. 

The action of renormalization group in the space of projection 
Hamiltonians is simplified: 

R ~  :exp L,r ~ (l _ z) = :exp(R(~~ ~(1 - x) (3.1) 

The projection Hamiltonian H is well defined when Re a > 2d, and 
admits an analytic continuation to the whole complex plane as a 
meromorphic function of a. 

We shall look for a solution of Wilson's equations in the form 

H =  : e x p  [ucp  4 + v ( V ( p ) 2 ] : ~  A( 1 - z )  (3.2) 

where u, v are independent parameters. The bifurcation value ao = 3d is a 
pole of the analytic.continuation of Hamiltonian H. The operation of 
analytic renormalization is the most adequate procedure for regularization 
of such a Hamiltonian. We shall formulate some definitions concerning 
analytic renormalization. 
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Let G be an arbitrary graph arising in the expansion over Feynman 
graphs and o~ G the Feynman amplitude corresponding to the graph G. As 
we have said, ~-G is a meromorphic function ore. The renormalized 
amplitude is given by the formula 

A.R.~-~= ~ ~ : A  
A E A ( G )  

where A( G ) = { { H1,..., Hk } l Hi are pairwise disjoint one-particle irreducible 
subgraphs of G}, 

~G:A=(2n)-h f dk, '"dkh 1-I d ( 1 - z ) ( q , )  ~I O(H) 
l~  L (G /A)  H ~ A  

G/A is a quotient graph, L(H)(E(H)) is a set of internal (external) lines of 
H, h is a Betti number of graph G/A, and let {qtjleL(G/A)} and 
{kil i= 1, 2,..., h(G/A)} be line and loop variables for the quotient graph 
G/A, {Pc [e e E(G/A)}, the set of external momenta of G/A, and O(H) is a 
vertex part for H. 

Here are some properties of the vertex part O(H): 

(i) If ]E(H)J =4 ,  then 

O(H) = ~ ..~(m 

is a polynomial in e-  1 of degree I V(H)I - 1, where [ V(H)] is a number of 
vertices of the graph H. 

(ii) If [E(H)I = 2, then 

[,v(.),-, (!)n] 
n = l  

where e ~ E(H). 
(iii) If [V(H)I = 1, then O(H) = 1. If H is not one-particle irreducible 

or IE(H)[ > 4, then O(H) =- O. O(H) depends only on subgraph H. 

T h e o r e m  1. To every connected graph H a vertex part O(H) can 
be associated in such a way that the renormalized amplitude A.R. ~G is an 
analytic function of e in some neighborhood of the origin. 

The proof of this important theorem can be derived from the analysis 
in Refs. 8 and 9 (see also Ref. 2). More deep and precise facts about vertex 
parts can be obtained from the so-called scaling relations for O(H). 
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Theorem 2. (Introduction of counterterms): 

A.R.:exp[ucp 4 + v(Vcp)2]:L~o_z)= :exp[wl (p4 + w2(Vq))2] :c  A(I_ I) (3.3) 

where 

WI(U , T)) = ~ IJ.nl)mo . . . .  W2(!.l , V) = ~ u ' v m o ' , m  + v (3.4) 
n~ 1,m~0 n~ I,m=0 

Here 

n--1 n--I  
On,m= E e - k  E a(k a), O',,m = 2 e-k  ~ a~ a) (3.5) 

k= 1 Germ, n k ~ 1 G ~ 5,~ 

where 5era, n (Se~,,) is the set of all one-particle irreducible graphs with 4 (2) 
external lines, generated by n vertices with 4 external lines and m vertices 
with 2 external lines. The equality (3.3) is understood in the sense of formal 
series in u. 

The proof of Theorem 2 is analogous to the proof of Theorem 3.3 of 
Ref. 2. 

4. S O L U T I O N  OF W l L S O N ' S  E Q U A T I O N S  

Let us define an action of renormalization group on the renormalized 
projection Hamiltonian. 

The following result holds: 

Lemma 1. 

Rz,;~ A'R:exp[ucp4 + v(VcP)2]:c-~(l-z) 

= :exp[22~wl (4)4 .~_/~Zw2(V(p)2] :c A(1 _ x) 

The proof of this result is easily derived from Theorem 2 and equalities 
R~a)@4 ~. ~2eq)4 Ria)(V(p)2 ~--- ~e(Vq))2" 

Let us introduce a new variable z:2=exp(~/2).  Transformations 
R(a) form an additive group of transformations (by r). In the following z,exp(z/2 ) 
it will be convenient to use an infinitesimal operator of this group. Denote 
this operator as 

/~(a) -- I W =  lim _*'x,exp('v/2) 
~ 0  "F 

822/38/5-6-4. 
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where 

Lemma 2. 

W A.R.:exp[u~p 4 + v(Vq~)2] :L~ _ z) 

= p l - - ~ u + P 2 - - ~ v  A . R . : e x p [ u 9 9 4 + v ( V c P ) 2 ] : ~ _ A ( l _ z )  

i 1 i t t I t --1 
p l(b/, V) = ~(W 1W2, v -- ~W2WI,v)(WI,uW2,v -- W2,uWl,v) ( 4 . 1 )  

p z ( U ,  V) 1 . . . .  _ , ' - (4.2) =~(~w2w,,u-wlw2,~)(w,,~w2,o w2,~wl,~) 1 

P r o o f .  I t  is directly checked that  

W A.R.:exp [u~o 4 + v(Vq~)e-] :LA~I - Z) 

= :exp [wl  ~0 4 + w2(V~o) 2 ] Jew1 ~0 4 + e �89 2 ] :LA(1 - z) 

We turn up equalities 

d 
~uu A'R ' :exp [uq~4 + v(VcP)2] :~- ~(1 - z) 

�9 r 4 r 2 = .[wl,.q~ + w2,~(Vfp) ] e x p [ w ~ p  4 + w2(Vfp)2]:c_3( 1 -Z) 

d 
~vv A'R':exp[4q)4 + v(VcP)2]:~-~(I-z) 

4 t 2 = ]I-W1 v~0 "q- W2 v(~7(P) ] exp[wl~p4 q- W2(V~0)2 ] : e -A(  1 - x )  

and using them in the preceding formula,  we get the assert ion of the lem- 
ma.  | 

T h e o r e m  3. The  formal  series p~, P2 have the form 

p I ( U ,  / ) ) :  ~ anmUnU m "-}- F.U, p2(b/ ,  U)= ~ bn,munp m -.[- F.I) 
n = 2 , m = O  n = 2 , m = 0  

where coefficients a,m and bnm do not  depend on e, a2o r 0. 

P r o o f .  By direct calculat ions one can see that  

WI(U,I))=U-- ~ ~ l,I n ~ ~)rnOnm (4.3) 
n = 2  m = O  

W Z ( U , ~ ) ) = / ) -  ~ ~ U rt ~ I.)mO'nm (4.4) 
r t~2  m ~ 0  
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where O,m and Otnm a r e  polynomials in 5-1 without constant terms. All 
graphs, spanned by one 4-line graph and nonzero number of 2-line graphs 
have detachable subgraphs and therefore terms of the type uv", n = 1, 2 .... 
are absent in the expansions (4.3), (4.4). Vertex parts, corresponding to 
graphs, spanned by 2-line graphs, equal to 0 and therefore terms of the 
type v" are absent in (4.4). Substituting (4.3), (4.4) in (4.1), (4.2) we receive 
the expansions for series p~ and P2. Proof of independence of anm and bnm 
of e may be obtained by induction in n and m and is analogous to proof of 
Theorem 4.1 in Ref. 2. We omit this part of proof. | 

If we solve the equation 

pl--~u+p2 A.R.:exp[uq94 + v(Vqg)2]:~ ~1_ z) = 0 (4.5) 

we also solve Wilson's equations. This equation has to be solved in the for- 
mal series u(e)=Ule+U252+ "", v(e)=v~e+v2 e2+ .". 

The left side of Eq. (3) may be transformed to 

J01(b/' / ) ) :@4:23(  1 )') "~ /02(~/' / ) ) ' ( V ( l ) ) 2 : c a (  1 - z )  

1 

+ ~ A.R.:(~o4)m((v~o)z)n:c~(~-Z~(n--_l~.(m--1) ! P l +  P2 

This series must be equal to 0 in all orders in e and therefore 
p~(u, v)=0, p2(u, v)=O. In fact, it is true in the first order in e because 
Hamiltonians 

:('04:c-3(1 - x )  = f ~ ( k l  "l- " ' "  -t- k 4 ) : o - ( k l )  �9 - f f ( k4 ) : c_3 (1 -z )  d k l  ' " " dk4  

:(VcP)z:2~I-z) = f 6(k~ + k2):o-(kl) o-(k2):~_311-z) k~ dkl dk2 

are linear independent and all terms in the sum have degree 5 more than 1. 
Let p~(u, v)= O, p2(u, v)= 0 in k orders on 5. Using linear independence of 
Hamiltonians :(p4:c~(~_x), :(V~o)2:23(a_z), and that all terms in the sum 
have degree in 5 more than k + 1 we obtain that p~ = 0, P2 = 0 in the k + 1 
order in e. 

So, 

p~(u, v) = O, p2(u, v) = 0 

This system of equations has two solutions in formal power series 
u =  v-=0 and u~(e), vl(e). The first solution u =  v = 0  corresponds to the 
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Gaussian fixed point. The second, nontrivial non-Gaussian solution exists, 
because a2~0.  Really, from the first equation one can obtain the 
expression 

u= ~ endn(v), dn(v)= ~ dm,nv m (4.6) 
n=l  rn:0  

where d,(v) are recurrently defined by an(v). Substituting (4.6) in the 
second equation, we come to the equation 

k=2 t=O 

This equation has the unique solution in formal power series in a and 
corresponds to the non-Gaussian branch of fixed points. 

It is easy to show that this branch is thermodynamically unstable. 
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